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We derive, without approximation, a closed-form macroscopic equation for finite
Knudsen number flow using the Boltzmann–BGK kinetic theory with constant relaxa-
tion time. This general closed-form equation is specialized into a compact integro-
differential equation for time-dependent isothermal unidirectional flows and results
are presented for channel flow. This equation provides a clear demonstration of
the effects of finite Knudsen number, and it also illustrates the limitations of the
Boltzmann–BGK theory with constant relaxation time and bounce-back boundary
conditions.

1. Introduction
It is well-accepted that fluid flows at infinitesimal Knudsen number (Kn) are

described by the Navier–Stokes equations. Here the non-dimensional number Kn
is the ratio of a microscopic length or time scale to macroscopic ones (see below).
The Navier–Stokes equations are not applicable in flow regimes at sufficiently small
macroscopic spatial and/or time scales, i.e. at finite Kn, because kinetic effects are
then important.

In order to obtain a fluid dynamical equation valid at all Kn, one can start from
a kinetic model of the flow, namely the Boltzmann equation (Cercignani 1975) with
the Bhatnagar–Gross–Krook (1954) (BGK) collision model

∂tf + v · ∇f = C, (1)

where C is the collision operator with a relaxation time τ ,

C = −f − f eq

τ
, (2)

f = f (x, v, t) is the single-particle distribution function which represents the density
of kinetic particles in the phase space (x, v) at time t , and the local kinetic equilibrium
distribution function f eq is the Maxwell–Boltzmann distribution,

f eq(x, v, t) =
ρ(x, t)

(2πθ(x, t))D/2
exp

[
− (v − u(x, t))2

2θ(x, t)

]
. (3)



496 H. Chen, S. A. Orszag and I. Straroselsky

Macroscopic flow variables, like the fluid velocity, are moments off . For example,

ρ(x, t) =

∫
dvf (x, v, t) =

∫
dvf eq(x, v, t),

ρu(x, t) =

∫
dvvf (x, v, t) =

∫
dv vf eq(x, v, t),

ρ(u2(x, t) + Dθ(x, t)) =

∫
dv v2f (x, v, t) =

∫
dv v2f eq(x, v, t),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4)

where ρ, u, θ denote, respectively, density, fluid velocity, and temperature, and D is the
spatial dimensionality of phase space. Notwithstanding some well-known limitations
such as unity Prandtl number, the Boltzmann–BGK kinetic model has been used
widely to study high Kn as well as high Mach number flow problems (cf. Xu,
Martinelli & Jameson 1994).

In the limit of vanishing Kn, the Navier–Stokes equations with kinematic viscosity
ν = τθ may be derived from (1)–(4) using Chapman–Enskog (see Chapman & Cowling
1970) techniques. In particular, when Kn ≡ τ/Th → 0, where Th is the characteristic
hydrodynamic scale, classical Newtonian hydrodynamics results. Finite-Kn corrections
to the Navier–Stokes equations have long been sought in terms of expansions in
powers of Kn (cf. Chen et al. 2004). There are many problems with these expansions
as well as with the resulting models (cf. Cercignani 1975).

In this paper, we pursue a macroscopic description of arbitrary Knudsen number
flow. There is a wealth of published work extending over several decades on closed-
form macrodynamic descriptions based on Boltzmann–BGK kinetics at arbitraryKn,
including equations for the flow velocity. These works are usually based on the
inversion of the simple BGK collisional operator. However, many of these results
are obtained using solutions that are ‘linearized’ around a homogeneous absolute
equilibrium distribution (Cercignani 1969, and references therein).

There are several reasons then why we believe that is useful to present the
macro-dynamic description of BGK kinetics in a general form without imposing
constraints like linearization (although our equations for unidirectional flow are, as for
unidirectional Navier–Stokes flow, those for linearized flow). First, while the resulting
equations are complicated integro-differential equations for which the formulation
of easy-to-implement boundary conditions may be difficult (see § 5), these equations
do open the opportunity for interesting mathematical analyses. Second, once the
dynamical equations for flow velocity are obtained under the assumptions of constant-
relaxation-time BGK dynamics, they may be easily generalized and/or modelled to
avoid such assumptions (e.g. by simply allowing τ to vary according to local flow
properties and near walls) and, hence, may find wider and perhaps more realistic
application, e.g. in the numerical analysis of finite-Kn flows. Also, the existence of
these equations allows the study of hitherto intractable problems, such as the effect
of finite Kn on turbulence transport (cf. Chen et al. 2004).

2. General formulation of hydrodynamics for any Kn

By integrating along the microscopic characteristic lines, the Boltzmann–BGK
kinetics (1)–(4) at constant τ admits the solution

f (x, v, t) =

∫ t

−∞

dt ′

τ
e−(t−t ′)/τ f eq(x − v(t − t ′), v, t ′), (5)
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or equivalently,

f (x, v, t) =

∫ ∞

0

e−sf eq(x − vτs, v, t − τs) ds. (6)

A constant relaxation time τ is assumed throughout our derivation of the dynamics.
This solution, based on the method of characteristics, is unique in free space. For
finite domains, there are additional boundary terms which must be included. If the
distance from the wall is large compared to the mean free path, the free-space solution
is a good approximation.

When combined with (3), (6) reveals the existence of closed-form macroscopic
equations for ρ, u, and θ for all Kn in a general D-dimensional flow situation. That
is, moments of f yield ρ, u, and θ via (4), while the right-hand side of (6) is already
given by the macro-dynamic variables via (3). Therefore, (6) represents a closed, self-
contained projection, and both the equilibrium and non-equilibrium parts of f (x, v, t)
are entirely determined (non-locally in time and space) by the inhomogeneity in the
macroscopic variables, ρ, u, and θ . This fundamental description can be argued to
be generally applicable to all flow situations. Furthermore, it should be distinguished
from that of the linearized analysis based on a homogeneous absolute equilibrium
(cf. Cercignani 1969).

These points can be made clearer by presenting a conventional hydrodynamic
equation representation. By taking moments (4) of (1), we obtain

∂tρuα + ∂βσαβ = 0, (7)

∂t [ρ(u2 + Dθ)] + ∂βqβ = 0, (8)

where the subscripts α and β denote Cartesian components, ∂β ≡ ∂/∂xβ , and the fluxes
are defined as

σαβ ≡
∫

dv vαvβf, (9)

qα ≡
∫

dv v2vαf. (10)

Using (3) and (6), it is apparent that a closed-form macroscopic description is
established. Indeed, combining (7)–(10) with (6), results in

∂tρ(x, t)uα(x, t) = −∂β

∫ ∞

0

ds e−s

∫
dv vαvβ

ρ(x − vτs, t − τs)

(2πθ(x − vτs, t − τs))D/2

× exp

[
− (v − u(x − vτs, t − τs))2

2θ(x − vτs, t − τs)

]
, (11)

∂t [ρ(x, t)(u2(x, t)+Dθ(x, t))]=−∂α

∫ ∞

0

ds e−s

∫
dvv2vα

ρ(x −vτs, t −τs)

(2πθ(x −vτs, t −τs))D/2

× exp

[
− (v − u(x − vτs, t − τs))2

2θ(x − vτs, t − τs)

]
. (12)

Of course, this system should be augmented by mass conservation, which has the
same form as for Kn =0:

∂tρ(x, t) = −∂β

∫
dv vβf = −∂β

∫
dv vβf

eq = −∂β(ρ(x, t)uβ(x, t)). (13)
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Equations (11)–(13) are a self-contained set of integro-differential equations for the
macroscopic fields ρ, u and θ that are valid for all Kn.

A few elementary transformations are useful in order to establish the analogy
between the functional equations (11) and (12), whose spatial arguments on the right-
hand side are shifted by vτs, and traditional macroscopic descriptions in physical
space. When the dummy integration variable v is shifted by (x − y)/τs, (11)–(12) can
be rewritten in terms of integration over the spatial domain R:

∂t (ρ(x, t)uα(x, t)) = −∂β

∫ ∞

0

ds e−s

∫
R

dDy

(τs)D
ρ( y, t − τs)

(2πθ( y, t − τs))D/2

× (xα − yα)(xβ − yβ)

τ 2s2
exp

[
− (x − y − τsu( y, t − τs))2

2θ( y, t − τs)(τs)2

]
, (14)

∂t [ρ(x, t)(u2(x, t) + Dθ(x, t))] = −∂α

∫ ∞

0

ds e−s

∫
R

dDy

(τs)D
ρ( y, t − τs)

(2πθ( y, t − τs))D/2

× (x − y)2(xα − yα)

τ 3s3
exp

[
− (x − y − τsu( y, t − τs))2

2θ( y, t − τs)(τs)2

]
. (15)

The macroscopic equations (13)–(15) define the dynamics of the hydrodynamic
variables ρ, u, and θ in a D-dimensional BGK system for finite Knudsen number.

The fact that (14)–(15) are a generalization of Newtonian (infinitesimally small Kn)
hydrodynamics is seen by recasting (14) in a form that reflects better the structure of
Newtonian hydrodynamics:

∂t (ρ(x, t)uα(x, t)) = −∂β

∫ ∞

0

ds e−s

∫
R

dDy[ρ( y, t − τs)θ( y, t − τs)δαβ

+ ρ( y, t − τs)uα( y, t − τs)uβ( y, t − τs)

− ρ( y, t − τs)θ( y, t − τs)τs(uα( y, t − τs)∂β

+ uβ( y, t − τs)∂α) + ρ( y, t − τs)θ2( y, t − τs)τ 2s2∂α∂β]

×
{

1

(2πθ( y, t − τs))D/2(τs)D
exp

[
− (x − y − τsu( y, t − τs))2

2θ( y, t − τs)(τs)2

]}
.

(16)

Equation (16) is easily derived using the identity

[xα − yα] exp

[
− (x − y − τsu( y, t − τs))2

2θ( y, t − τs)τ 2s2

]

≡
[
uα( y, t − τs)τs − θ( y, t − τs)τ 2s2 ∂

∂xα

]
exp

[
− (x − y − τsu( y, t − τs))2

2θ( y, t − τs)τ 2s2

]
.

Examining (16) term by term, it seems that, apart from its non-local nature, it is
quite similar to the Navier–Stokes equation, while reflecting its kinetic origin more
than similar equations based on finite-order perturbative corrections in Kn. Indeed,
when τ → 0, the { } term on the right-hand side of (16) yields a delta function of
x − y, reducing (16) to the Navier–Stokes equation for an ideal gas. Equation (16) also
provides a basis to evaluate finite-Kn effects, using expansion in τ to yield higher-Kn
corrections in a systematic way, as an alternative to traditional approaches based on
Chapman–Enskog methods. Since the derivation above involves no approximation
aside from the BGK approximation and constant τ and is valid for any Kn, (16)
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may provide consistency checks for approximations and models that are based on
expansions in Kn.

3. Unidirectional isothermal flow
As a simple application, we apply the general formulation of § 2 to a special class of

flows, namely unidirectional flows in D =3 dimensions. In this case, the spatial vari-
ation of all macroscopic variables A is perpendicular to the direction of fluid flow, i.e.
u · ∇A ≡ 0. We choose the unit vector ẑ to be in the flow direction, so that any quantity
A has spatial dependence only in x and y. Let us further assume that the flow is
isothermal as would occur if the system were in contact with a heat bath, i.e. we assume
now that θ(x, t) = θ = const. We note that isothermal flows exist in nature in various
situations, including, but not limited to, incompressible flows. Since for unidirectional
flows the continuity equation (13) indicates that mass density is independent of time,
it can be shown from (11) (or (16)) that constant density leads to ux(x, t) = uy(x, t) = 0
for isothermal situations. Hence the only remaining relevant macroscopic variable is
the z-component of the flow velocity. Setting u(x, t) =U (x, y, t) ẑ, we can integrate
(16) over dz′, resulting in the following compact formulation:

∂tU (x, y, t) = ∇ ·
[ √

θ

2πλ
∇

∫ ∞

0

ds

s
e−s

∫
R

dx ′ dy ′U (x ′, y ′, t − τs)

× exp

[
− (x − x ′)2 + (y − y ′)2

2s2λ2

]]
, (17)

where λ≡ τ
√

θ is the ‘mean free path’. In (17), we have set ρ = 1 without loss of
generality. Various forms of (17), and especially its steady-state variants for classical
flows, have been analysed long ago (Cercignani 1969).

Now notice that the non-local component of (17),

Q =

∫
R

dx ′ dy ′U (x ′, y ′, t − τs) exp

[
− (x − x ′)2 + (y − y ′)2

2s2λ2

]
,

begs to be represented as a solution to a 2D heat equation, with the (t −τs) argument
treated as a parameter while the dummy ‘evolution time’ r is defined as r =(1/2)s2λ2.
Indeed,

V (x, y, t − τs; r) =
1

2πs2λ2

∫
R

dx ′ dy ′U (x ′, y ′, t − τs) exp

[
− (x − x ′)2 + (y − y ′)2

2s2λ2

]

is the solution of the 2D equation

∂rV (x, y, t, r) = λ2∇2V (x, y, t, r) (18)

with V (x, y, t, 0) =U (x, y, t). (Here ∇2 ≡ ∂2/∂x2 + ∂2/∂y2 is the two-dimensional
Laplacian). On the other hand, the solution to (18) is (formally)

V (x, y, t, r) ≡ exp(rλ2∇2)U (x, y, t).

In this way, we obtain the more compact spatial formulation:

∂tU (x, y, t) = ∇ ·
[
ν

∫ ∞

0

ds s e−s exp
(

1
2
s2λ2∇2

)
∇U (x, y, t − τs)

]
, (19)

where ν ≡ τθ is the kinematic viscosity given the Boltzmann–BGK model. This
equation is valid for any isothermal unidirectional flow (steady or unsteady).
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Equation (19) can be also derived using a direct procedure. Indeed, for unidirectional
flows, (6) reduces to

f (x, y, v, t) =

∫ ∞

0

e−sf eq(x − vxτs, y − vyτs, v, t − τs) ds.

Furthermore, (7) simplifies to

∂tU + ∂βσβz = 0,

where β = x, y, and the momentum flux (9) becomes

σβz =

∫
dv vβvzf. (20)

Observing that a spatial shift can be represented as an operator: F (x + a) =
exp(a∂x)F (x), allows (20) to be expressed as

σβz(x, t) =

∫ ∞

0

ds e−s

∫
dv vβvz exp[−τsv∇]

1

(2πθ)D/2
exp

[
(v − u(x, t − τs))2

2θ

]
.

(21)

Since for unidirectional flow ∂z ≡ 0, Gaussian integration in the z-direction can be
separated from integrals in the x- and y-directions so that (21) becomes

σβz =

∫ ∞

0

ds e−s

∫
dv⊥

2πθ
vβ exp

[
−τsv⊥· ∇ − v2

⊥
2θ

]

×
∫ ∞

−∞

dvz

(2πθ)1/2
vz exp

[
− (vz − U (x, y, t − τs))2

2θ

]

=

∫ ∞

0

ds e−s

∫
dv⊥

2πθ
vβ exp

[
−τsv⊥ · ∇ − v2

⊥
2θ

]
U (x, y, t − τs),

where v⊥ ≡ (vx, vy). It is straightforward to show that the operator∫
dv⊥

2πθ
vβ exp

[
−τsv⊥ · ∇ − v2

⊥
2θ

]
= − exp

[
θτ 2s2∇2

2

]
θτs∂β,

leads to

σβz = −
∫ ∞

0

ds e−s exp

[
θτ 2s2∇2

2

]
θτs∂βU (x, y, t − τs), (22)

which immediately yields (19).

4. Some properties of particular solutions
An important special case of (19) is for flow driven by a constant pressure gradient

or body force g. In this case, the right-hand side of (19) is modified by the addition
of g. Thus, for steady channel or pipe flow driven by g:

∇ ·
[
ν

∫ ∞

0

ds exp
(
−s − 1

2
s2λ2∇2

)
∇U (x, y)

]
= −g. (23)

For small Kn ≡ λ/L or λ, (23) becomes the elliptic equation ∇ · ν∇U = −g which
together with the boundary condition U = 0 yields the well-known Poiseuille flows.
On the other hand, at large Kn, one can informally argue that the λ2∇2-term dominates
the exponent, allowing evaluation of the integral asymptotically as 1/(−λ2∇2) yielding
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Figure 1. Velocity profiles for (a) Kn = 0.1, (b) 0.25 (at the minimum Q+), (c) 1, and (d) 10.

the ‘plug flow’ solution U = gτ at all points not on the walls. Note that this latter
solution is independent of the choice of boundary conditions, (i.e. the details of
collision processes at the boundary) and holds for arbitrary cross-sectional channel
geometry.

This analysis is made precise by assuming bounce-back boundary conditions applied
to the distribution function for 2D channel flows; on the macroscopic level, this
corresponds to imposing U (−y) = −U (y), for all y > 0 where the boundary is located
at y = 0. Solutions to (23) can be obtained using Fourier sine series in odd harmonics.
For planar channel flow in the region 0 � y � L, the solution is

U (y) =

∞∑
n=0

4gτ

π(2n + 1)

[
1 − 1√

2π(2n + 1)Kn
exp

((
1√

2(2n + 1)πKn

)2)

× erfc

(
1√

2(2n + 1)πKn

)]−1

sin

(
π(2n + 1)y

L

)
. (24)

In figure 1, this flow is plotted as a function of y for various Kn using g = 1, L =1,
and τ = Kn.

These velocity profiles exhibit a slip velocity equal to Kn (or gτ in dimensional
form) at the wall. This slip velocity is an immediate consequence of (24), since the
Fourier coefficient of sin[π(2n + 1)y/L] in (24) behaves as 4gτ/π(2n + 1) as n → ∞
and thus reflects the Gibbs phenomenon satisfied by the Fourier series (24). This
slip velocity is consistent with many results for the Maxwell slip velocity, which is
proportional to the mean free path; however, the result that the slip equals Kn may
overstate the slip velocity owing to the assumptions of constant τ and the bounce-back
boundary conditions.
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Figure 2. Non-dimensional mass flux Q+ as a function of Kn.

Furthermore, for a channel of a width L, we obtain the well-known Knudsen
Minimum phenomenon (Cercignani 1975), namely the non-monotonic behaviour of

the dimensionless mass flux Q+ ≡
∫ L

0
dyU (y)/(gL2/

√
θ ) exhibiting a minimum at

finite Kn (see figure 2). In fact, the minimum mass flux of 0.813 is obtained at
Kn = 0.250. Also, (24) can be shown to lead to two asymptotic solutions:

Q+ =
1

12Kn
, Kn → 0,

Q+ = Kn, Kn → ∞.

The Kn → 0 limit is that of Newtonian flow (i.e. the Navier–Stokes equations), while
the Kn → ∞ limit is that of plug flow. Notice that the sum of these two asymptotes
Kn + 1/(12 Kn) has a minimum of 0.577 at Kn = 0.289, not far from the true minimum.
These mass flux results compare well at low-to-moderate Kn with lattice-Boltzmann
numerical solutions with the BGK collision term (cf. Toschi & Succi 2005; Zhou
et al. 2006, and references therein). At high Kn, the actual mass flux is proportional
to log Kn not Kn; this log Kn behaviour reflects more realistic interaction with the
boundaries than is provided by the Boltzmann–BGK approximation with constant
relaxation time and bounce-back boundary conditions.

It can be also demonstrated that the plug flow regime can be derived from (24) in
the asymptotic limit Kn → ∞:

U (y) ∼ gτ

∫ ∞

0

dv

[
v sin(πy/L) + (v2 sin2(πy/L) + 1)1/2

]1/(
√

2π Kn)

1 + v2

→ U (y) = gτ = const; Kn → ∞.

Let us also briefly comment on the well-posedness of the Cauchy initial-value
problem for (19). This problem can be treated in much the same way as that for similar
equations based on distribution functions that are analysed in depth by Cercignani
(1969). To do this, we consider a single Fourier mode in x, y with wavenumber k

so that ∇2 → −k2, and Laplace-transform in time. The resulting single-Fourier-mode
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solution F (t), obtained by inverse Laplace transform, is

F (t) =
1

2πi

∫ c+i∞

c−i∞
F (0) exp(−pt/τ )G(p) dp, (25)

where the Green’s function G(p) is

G−1(p) = p − W

∫ ∞

0

ds s exp[(p − 1)s − Ws2/2]

and W ≡ k2λ2 > 0. Showing that the real parts of all singularities of G(p) are positive
suffices to show the well-posedness of (19). Indeed, in this case the integration contour
in (25) can be chosen along the imaginary axis, c = 0, for any W , and the solution
F (t) will remain bounded, implying that the norm of the solution is bounded by a
multiple of its initial value.

Let us now show that, for any complex p = a + ib, such that

p = W

∫ ∞

0

ds s exp[(p − 1)s − Ws2/2] ≡ L(p, W ) (26)

it follows that a > 0. Observe first that, in the deep hydrodynamic limit W → 0 +,
a ∼ W > 0 is the diffusion pole corresponding to classical fluid dynamics. In this limit,
we can assume that a < 1 as that must hold if a � 0. Then, as W → 0, (26) gives
p ∼ W/(1 − p)2, whose solutions are either p ∼ W or p is close to 1. Therefore, by
continuity of a as a function of W , it is sufficient to show that (26) has no solutions
with a = 0 for any finite W . Let us assume there is a solution with a = 0 for some W .
Then we observe that

L(p, W ) = W
∂

∂p

∫ ∞

0

ds exp[(p − 1)s − Ws2/2] = W
∂

∂p
(
√

π/2W [exp(z2)erfc(z)]),

where z ≡ (1 − p)/
√

2W , is well-defined for all complex p. Therefore,

L(p, W ) = 1 −
√

π

2W
(1 − p)

[
exp

((
1 − p√

2W

)2)
erfc

(
1 − p√

2W

)]

so that (26) gives p = 1 or √
π

2W
exp(z2) erfc(z) = 1.

This function has no solutions for a < 0, i.e. Re z > 1/
√

2W .
A straightforward observation here is the recovery of the standard Navier–Stokes

results. Indeed, in the limit of τ → 0 and λ→ 0, (19) clearly reduces to the Navier–
Stokes equation for unidirectional flows, i.e. a standard diffusion equation

∂tU (x, y, t) = ∇ · [ν∇U (x, y, t)].

Other (more interesting) limits may be taken that have either τ → 0 or λ→ 0 separately.
Equation (19) is restricted in that it is only valid for unidirectional flows, albeit
steady or unsteady. Hence, it automatically precludes any so-called secondary flow
phenomena (Chen et al. 2004).

Equation (19) provides a general description for unidirectional flows that are beyond
the applicability of the classical Navier–Stokes equations, either involving very small
spatial lengths or very fast time variations, or both. Because it is an exact consequence
of the Boltzmann–BGK kinetics, (19) may be used to study various unidirectional
flow calculations, approximations and models.
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5. Discussion
In this paper, we have presented a finite closed-form formulation of BGK kinetics in

terms of the basic hydrodynamic variables. This is derived from the Boltzmann–BGK
kinetic model without approximation beyond τ constant. Therefore, it is applicable to
general flow situations with arbitrary Knudsen number (and Mach number) assuming
validity in the original Boltzmann–BGK kinetics. The key starting point is given by
(5), while the general formulation is represented by (13)–(15). Unlike the original
kinetic description, the hydrodynamical expressions reveal more direct insights in
terms of physical effects. For instance, (14) manifests both memory and non-local
spatial effects in flows at finite Knudsen number originating from the finite mean
free path. In addition, the general formulation reveals a clear tensorial structure
strikingly similar to that of the Navier–Stokes equation. On the other hand, unlike
the Navier–Stokes equation or its higher-order (Burnett) approximations, the new
formulation does not rely on a small-Knudsen-number approximation, so its range of
applicability extends at least to moderate Knudsen number values. (At high Knudsen
number, the limitations observed in the channel flow results presented above show
the limitations of the Boltzmann–BGK kinetics with constant relaxation time and
bounce-back boundary conditions.) This general formulation may also serve as a new
foundation for studying various flow situations and limits such as unidirectional flows,
or be used to compare results that are obtained from different theoretical procedures
or analytical or numerical approximations.

Observe that the existence of a non-local time and space formulation justifies the
U |∂V = 0 boundary condition (for a non-moving wall), no matter what interaction
of particles with the boundary is specified for the underlying BGK-equation. This is
not in contradiction with the fact that in the kinetic regime, for example, (19) yields
a variety of solutions with a finite slip velocity (U being finite even infinitely close
to the wall), when the solution U is understood in a generalized function sense. To
that end, note that derivation of the general macro-dynamic representation presented
here is based on the assumption that the microscopic characteristic lines are straight.
Strictly speaking, this implies that it holds for unbounded free space, so that all
the wall boundaries are sufficiently distant and do not alter (reflect) the particle
trajectories. Nonetheless, this formulation can still be used to study flow problems
in finite domains. One way to accomplish this is by forming an infinite domain via
symmetric or periodic distributions of the velocity field. After all, boundary conditions
can be interpreted in terms of flows coming from imaginary domains residing on the
other sides of boundaries.

Another possibility is to extend the present theoretical formulation by observing
that the boundaries give effective collisional effects so that τ should be a function of
the distance d to the wall. Simple intuition suggests that the mean-free-path λ� d and
τ � d/

√
θ . This suggests a boundary layer region added to the current description, per-

haps by just allowing τ to be modelled in (19) as location dependent and not constant.
Nevertheless, the non-local nature of finite-Kn flow exposed in the present formulation
requires rethinking boundary condition issues. The analogy with the Navier–Stokes
vs Euler equation-based descriptions of shock fronts is suggestive that including local
variation of τ may lead to extended validity of the present Boltzmann–BGK model.
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